

<u>MQWs的新用途</u>	元件結構與MQWs能帶圖 [after Qui]
● 根據多位學者的研究,在OLED中加入MQW結構,可將電 子與電洞侷限在發光層中,增加發光效率。而因為應用了 量子效應,使得元件發光特性有narrow spectral emission、 higher emission efficiency及tunable emission spectrum等優 點。	
✓ 2002年4月,中國學者Yong Qiu等人對MQWs提出了新用 途。他們將MQW製作在電洞傳輸層,借此減緩電洞的傳 輸速度,達到charge balance,提高發光效率。	6 nm
 [Y. Qiu, Y. Gao, P. Wei, and L. Wang, Appl. Phys. Lett. 80, 2628 (2002).] ■ 同年11月, Qiu等人又提出了,藉由調整MQW數量及發光 層材料,可控制載子的傳輸,而得到不同波長的光。 [Y. Qiu, Y. Gao, L. Wang, P. Wei, L. Duan, D. Zhang, and G. Dong, Appl. Phys. Lett. 81, 3540 (2002).] 	ITO/CuPc/(NPB/CuPc)n/NPB/Alq3/Mg:Ag/Ag ■ 作者將MQWs設計在電洞傳輸層,其中(單看MQW)NPB總厚 度加起來為15 nm,CuPc的總厚度為6 nm,分別變化量子井 個數為0、2、4與6(對)。
2004/06/08 國立彰化師大藍光實驗室 陳秀芬 7	2004/06/08 國立彰化師大藍光實驗室 陳秀芬 8

量子效	故應的另一種應用Nanola	yers
 2004年,I 極薄的有約 用電子在約 低由陰極到 [J. H. Park Kim, Appl. 作者使用 [PMMA] 数的材料約 發現介電約 	Park等人提出在發光層與金屬陰; 機絕緣層(polymer-insulating nan 傳膜中的穿隧效應,增加其傳輸; 到發光層時的位能障,改善元件效 k,O.O.Park, JW. Yu, J. K. Kin Phys. Lett. 84 , 1783 (2004).] polystyrene [PS]、poly(methylm 與polyethylene oxide [PEO]三種; 來作研究 ɛ_{rs}(2.5) < ɛ_{PMM}(3.0) < 常數越小的材料,元件的效率越好	極間,加入 olayer)。利 速度,並降 攻率。 n, and Y. C. nethacrylate) 不同介電常 & _{FEO} (4.0), 仔。
2004/06/08	國立彰化師大藍光實驗室 陳秀芬	11

If we wa	nt to do research on the	topic
← 在學術方 可互相 。	ī面: 刘盪腦力,思考新的ideas作為]	賣點。
●在產學合 未來若有 提供參考	合作方面: 有機會協助廠商研發,以上文 5。	2 獻將可
2004/06/08	國立彰化師大藍光實驗室 陳秀芬	14

